3 The Knebusch splitting tower

Notation 3.1. If not explicitly stated q, q' denote quadratic forms over the base field F.

Definition 3.2. Define recursively

$$\begin{split} F_0 &\coloneqq F \quad q_0 \coloneqq q_{\mathrm{an}} \\ F_k &\coloneqq F_{k-1}(q_{k-1}) \quad q_k \coloneqq (q_{k-1})_{\mathrm{an}} = (q_{F_k})_{\mathrm{an}} \end{split}$$

We call $i_k \coloneqq i_k(q) \coloneqq i(q_{F_k})$ the k-th Witt index. This number stabilizes after finitely many steps. Then first k s.t. q_{F_k} is split is called height of q and denoted by h = h(q). Moreover, we call

$$F_0 \subseteq F_1 \dots \subseteq F_h$$

the generic/Knebusch splitting tower.

Proposition 3.3.

$$\{i(q_k)|k=0,1,...,n\} = \{i(q_K)|K/F \text{ field extension}\}\$$

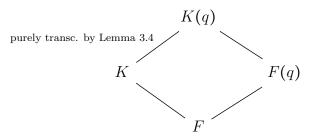
Lemma 3.4.

F(q)/F is purely transcendental $\Leftrightarrow q$ is isotropic

Proof. " \Rightarrow ": Recall that extending along purely transcendental extensions preserves anisotropic forms

" \Leftarrow ": Hint: \mathbb{H} is isometric to $(x, y) \mapsto xy$ and write x as rational function in terms of the other variables in the function field.

Proof of Prop.3.3. Wlog q anisotropic. We just prove the statement by induction over h(q): h = 0: Then q is hyperbolic and there is nothing to prove h > 0: Then consider $(q_{F(q)})_{an}$. This is a form of height one less, hence, by induction the statement holds. So it remains to show that for any field extension K/F making q_K anisotropic, that $i(q_K) \ge i_1(q)$ holds: But this is witnessed by the diagram



and the fact that if M/L is purely transcendental $i(f_M) = i(f)$ for any quadratic form f over L.

4 The Separation Lemma of Hoffmann

Remark 4.1 ((Pfister) neighbor argument). We will repeatedly use the following argument: Let $q \subseteq q'$. If dim q + i(q') > q', q' must also be isotropic as the underlying vector space of q and a totally isotropic subspace must intersect by dimension formula.

Remark 4.2 (Subform criterion). Let g, f be quadratic forms over F. Then

$$g \subseteq f \Leftrightarrow i(f \perp -g) \ge \dim g$$

Proof. Hint: For " \Leftarrow " use the restriction on the Witt index to obtain a lowdimensional representative of f - g in the Witt ring. Then use that equality in W(F) and same dimension implies isometry.

GOAL: Under which conditions does q stay anisotropic over F(q).

Remark 4.3 (Motivation). Define

$$q \leq q' \Leftrightarrow q'_{F(q)}$$
 is isotropic

if both $q \leq q'$ as well as $q' \leq q$ we write $q \approx q'$.

One easily shows that

 $q \leq q' \Leftrightarrow$ There exists a rational map $Q \rightarrow Q'$

1

Moreover, we have an equivalence

1. $q \approx q'$

- 2. Q and Q' are stably birational
- 3. The outer motivic summand of Q and Q' coincide

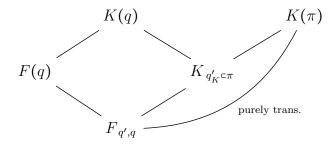
So the Hoffmann separation lemma gives restrictions not only for the algebraic theory but also in the geometric and motivic context.

Theorem 4.4 (Hoffmann Separation Lemma). If there exists $n \in \mathbb{N}$ s.t. $\dim q' \leq 2^n < \dim q$, then $q_{F(q')}$ is anisotropic

Remark 4.5. Any strengthening of this result, cannot purely rely on an assertion on dimension: Indeed, Pfister neighbors q, q' of the same quadratic form will satisfy $q'_{F(q)}$ isotropic by a neighbor argument.

¹One can even strengthen the statement of \Rightarrow that there exists a dominant rational map $\mathbb{P}^n \times Q \rightarrow Q'$ by looking at function fields.

Remark 4.6. We will proceed in the following way to prove the separation lemma: Let n be maximal with the separating property.



First we will construct the extensions L/K/F, s.t.

- 1. L/F is purely transcendental and contains $K(\pi)$
- 2. There exists an anisotropic (n + 1)-Pfister form π over K with $q'_K \subset \pi$

Finally we apply the following "Pfister neighbor argument": Suppose $q'_{F(q)}$ were isotropic. Then $\pi_{K(q)}$ is isotropic, hence, split. So by the main theorem about function fields $q_K \subset \pi$, i.e. Pfister neighbors. So q_L is isotropic contradicting L/F purely transcendental.

To start of let us tackle the first desired property. Fix $n \in \mathbb{N}$.

Lemma 4.7. Let $\pi = \langle T_1, ..., T_{n+1} \rangle$ over $E = F(T_1, ..., T_n)$. Then

- 1. π is anisotropic
- 2. $L = E(\pi)/F$ is purely transcendental

Proof sketch. (1) follows from inductively applying the following result. *Claim.* q_1, q_2 anisotropic quadratic forms over a field F. Then $q_1 \perp Tq_2$ is anisotropic over F(T).

Proof. Exercise. Hint: Choose q_1, q_2 diagonal and kill denominators of a solution. Then compare coefficients.

(2) just follows from the fact that the equation

$$0 = \pi(X_1, \dots, X_{2^{n+1}}) = f(X_1, \dots, X_{2^n}) + T_1 f(X_{2^n+1}, \dots, X_{2^{n+1}})$$

, where $f = \langle \langle T_2, ..., T_{n+1} \rangle \rangle$, exhibits T_1 as a rational function in the other variables.

Now we want to find an extension K/E such that K/E has the other desired properties and $K(\pi)/E(\pi)$ is transcendental. For this we need the following criterion for a form to be a subform of a Pfister form

Lemma 4.8. q, π annisotropic over F, π Pfister and dim $q < \dim \pi$. Set $\tilde{q} \coloneqq \pi \perp -q$. TFAE:

- 1. $\pi_{F(\tilde{q}_{an})}$ is isotropic
- 2. $q \leq \pi$

Proof. Note that the assumption on dimension implies that \tilde{q} cannot be hyberpolic (neighbor argument). So condition (1) is always non-empty.

(2) implies (1) is clear. So assume $\pi_{\tilde{q}_{an}}$ is hyperbolic. Then by the main theorem about function fields (and $1 \in D_F(\pi)$) we would like to deduce that $\pi \simeq \tilde{q}_{an} \perp q'$ for some quadratic form q' over F:

For this observe that $\pi - \tilde{q}_{an} = q$ in W(F), hence, $\pi \perp -\tilde{q}_{an}$ is isotropic over F by dim $\pi > \dim q$. So \tilde{q}_{an} and π represent a common $a \in F^{\times}$.

Hence, in W(F)

$$\pi = \tilde{q}_{\rm an} + q' = \tilde{q} + q' = \pi - q + q'$$

As q is anisotropic, we obtain $q \simeq q'_{\text{an}} \subseteq \pi$.

Proof of Thm 4.4. With the notation of lemmas 4.7, 4.8

$$E = E_0 \subset E_1 \subset \ldots \subset E_h$$

be the Knebusch splitting tower associated to $\tilde{q} \coloneqq \pi \perp -q'_E$. Then we claim that the maximal *i* s.t. π_{E_i} is still anisotropic, satisfies

- 1. i < h, by neighbor argument as dim $\pi > \dim \tilde{q}/2$
- 2. $(q'_{E_i})_{an} \subset \pi_{E_i}$ as consequence of lemma 4.8

Observe that we know

- 1. $q'_{E(\pi)}$ is anisotropic by lemma 4.7
- 2. dim $q' \leq \dim \pi/2$, by choice of n

from which we want to deduce that $E_i(\pi)/E(\pi)$ is purely transcendental: Proving this resolves our remaining claims, namely:

• $K(\pi) = E_i(\pi)/E_{i-1}(\pi)/.../E(\pi)/F$ is purely transcendental

• and therefore $q'_K = (q'_K)_{an}$ as K is an intermediate field in $K(\pi)/F$.

Set $\tilde{q}_j \coloneqq (\tilde{q}_{E_j})_{\text{an}}$. Observe that by induction it suffices to prove $(\tilde{q}_j)_{E_j(\pi)}$ is isotropic, whenever $\pi_{E_{j+1}}$ is anisotropic, which is equivalent to j < i.

Indeed, as we have $E_{j+1} = E_j(\tilde{q}_j)$ by definition and therefore $E_{j+1}(\pi) = E_j(\pi)(\tilde{q}_j)$.

To keep notation compact we may assume j = 0 (note that other than removing indices the assumptions and statement we want to prove do not change):

Suppose π_{F_1} is anisotropic. Aiming for contradiction, we assume $(\tilde{q}_{an})_{E(\pi)}$ is anisotropic. So

$$(\tilde{q}_{\mathrm{an}})_{E(\pi)} = -q' \text{ in } W(E(\pi))$$

implies $(\tilde{q}_{an})_{E(\pi)} = -q$ over $E(\pi)$ by assumption 2.. But this would imply

$$\dim \tilde{q}_{\mathrm{an}} = \dim q'$$

which would imply

$$\frac{\dim \pi}{2} \geq \dim q' = \dim \tilde{q} \geq \dim \pi - \dim q' \geq \frac{\dim \pi}{2}$$

where we used that if $\dim(\pi \perp -q')_{an} < \dim \pi - \dim q'$, " \leq " would $\pi \simeq q' \perp \phi$ for some quadratic form ϕ over E by remark 4.2, "<" would imply that ϕ is isotropic - a contradiction. By the usual Witt ring argument this shows $\pi \simeq q' \perp \tilde{q}_{an}$ over E, contradicting the fact that π_{F_1} is anisotropic, but \tilde{q}_{F_1} is not.