
3 The Knebusch splitting tower

Notation 3.1. If not explicitly stated q, q′ denote quadratic forms over the
base field F .

Definition 3.2. Define recursively

F0 ∶= F q0 ∶= qan

Fk ∶= Fk−1(qk−1) qk ∶= (qk−1)an = (qFk
)an

We call ik ∶= ik(q) ∶= i(qFk
) the k-th Witt index. This number stabilizes after

finitely many steps. Then first k s.t. qFk
is split is called height of q and

denoted by h = h(q). Moreover, we call

F0 ⊆ F1... ⊆ Fh

the generic/Knebusch splitting tower.

Proposition 3.3.

{i(qk)∣k = 0,1, ..., n} = {i(qK)∣K/F field extension}

Lemma 3.4.

F (q)/F is purely transcendental⇔ q is isotropic

Proof. ”⇒”: Recall that extending along purely transcendental extensions
preserves anisotropic forms

”⇐”: Hint: H is isometric to (x, y)↦ xy and write x as rational function
in terms of the other variables in the function field.

Proof of Prop.3.3. Wlog q anisotropic. We just prove the statement by in-
duction over h(q): h = 0: Then q is hyperbolic and there is nothing to prove
h > 0: Then consider (qF (q))an. This is a form of height one less, hence,
by induction the statement holds. So it remains to show that for any field
extension K/F making qK anisotropic, that i(qK) ≥ i1(q) holds: But this is
witnessed by the diagram

K(q)

K F (q)

F

purely transc. by Lemma 3.4

and the fact that if M/L is purely transcendental i(fM) = i(f) for any
quadratic form f over L.
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4 The Separation Lemma of Hoffmann

Remark 4.1 ((Pfister) neighbor argument). We will repeatedly use the fol-
lowing argument: Let q ⊆ q′. If dim q + i(q′) > q′, q′ must also be isotropic
as the underlying vector space of q and a totally isotropic subspace must
intersect by dimension formula.

Remark 4.2 (Subform criterion). Let g, f be quadratic forms over F . Then

g ⊆ f ⇔ i(f ⊥ −g) ≥ dim g

Proof. Hint: For ”⇐” use the restriction on the Witt index to obtain a low-
dimensional representative of f − g in the Witt ring. Then use that equality
in W (F ) and same dimension implies isometry.

GOAL: Under which conditions does q stay anisotropic over F (q).

Remark 4.3 (Motivation). Define

q ≼ q′⇔ q′F (q) is isotropic

if both q ≼ q′ as well as q′ ≼ q we write q ≈ q′.
One easily shows that

q ≼ q′⇔ There exists a rational map Q→ Q′

1

Moreover, we have an equivalence

1. q ≈ q′

2. Q and Q′ are stably birational

3. The outer motivic summand of Q and Q′ coincide

So the Hoffmann separation lemma gives restrictions not only for the alge-
braic theory but also in the geometric and motivic context.

Theorem 4.4 (Hoffmann Separation Lemma). If there exists n ∈ N s.t.
dim q′ ≤ 2n < dim q, then qF (q′) is anisotropic

Remark 4.5. Any strengthening of this result, cannot purely rely on an
assertion on dimension: Indeed, Pfister neighbors q, q′ of the same quadratic
form will satisfy q′

F (q)
isotropic by a neighbor argument.

1One can even strengthen the statement of ⇒ that there exists a dominant rational
map Pn

×Q→ Q′ by looking at function fields.
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Remark 4.6. We will proceed in the following way to prove the separation
lemma: Let n be maximal with the separating property.

K(q) K(π)

F (q) K q′K⊂π

F q′,q

purely trans.

First we will construct the extensions L/K/F , s.t.

1. L/F is purely transcendental and contains K(π)

2. There exists an anisotropic (n + 1)-Pfister form π over K with q′K ⊂ π

Finally we apply the following ”Pfister neighbor argument”: Suppose q′
F (q)

were isotropic. Then πK(q) is isotropic, hence, split. So by the main theo-
rem about function fields qK ⊂ π, i.e. Pfister neighbors. So qL is isotropic
contradicting L/F purely transcendental.

To start of let us tackle the first desired property. Fix n ∈ N.

Lemma 4.7. Let π = ⟪T1, ..., Tn+1⟫ over E = F (T1, ..., Tn). Then

1. π is anisotropic

2. L = E(π)/F is purely transcendental

Proof sketch. (1) follows from inductively applying the following result.

Claim. q1, q2 anisotropic quadratic forms over a field F . Then q1 ⊥ Tq2 is
anisotropic over F (T ).

Proof. Exercise. Hint: Choose q1, q2 diagonal and kill denominators of a
solution. Then compare coefficients.

(2) just follows from the fact that the equation

0 = π(X1, ...,X2n+1) = f(X1, ...,X2n) + T1f(X2n+1, ...,X2n+1)

, where f = ⟪T2, ..., Tn+1⟫, exhibits T1 as a rational function in the other
variables.
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Now we want to find an extension K/E such that K/E has the other
desired propertes and K(π)/E(π) is transcendental. For this we need the
following criterion for a form to be a subform of a Pfister form

Lemma 4.8. q, π annisotropic over F , π Pfister and dim q < dimπ. Set
q̃ ∶= π ⊥ −q. TFAE:

1. πF (q̃an) is isotropic

2. q ≤ π

Proof. Note that the assumption on dimension implies that q̃ cannot be
hyberpolic (neighbor argument). So condition (1) is always non-empty.

(2) implies (1) is clear. So assume πq̃an is hyperbolic. Then by the main
theorem about function fields (and 1 ∈DF (π)) we would like to deduce that
π ≃ q̃an ⊥ q′ for some quadratic form q′ over F :

For this observe that π − q̃an = q in W (F ), hence, π ⊥ −q̃an is isotropic
over F by dimπ > dim q. So q̃an and π represent a common a ∈ F ×.

Hence, in W (F )

π = q̃an + q
′ = q̃ + q′ = π − q + q′

As q is anisotropic, we obtain q ≃ q′an ⊆ π.

Proof of Thm 4.4. With the notation of lemmas 4.7, 4.8

E = E0 ⊂ E1 ⊂ ... ⊂ Eh

be the Knebusch splitting tower associated to q̃ ∶= π ⊥ −q′E. Then we claim
that the maximal i s.t. πEi

is still anisotropic, satisfies

1. i < h, by neighbor argument as dimπ > dim q̃/2

2. (q′Ei
)an ⊂ πEi

as consequence of lemma 4.8

Observe that we know

1. q′
E(π)

is anisotropic by lemma 4.7

2. dim q′ ≤ dimπ/2, by choice of n

from which we want to deduce that Ei(π)/E(π) is purely transcendental:
Proving this resolves our remaining claims, namely:

� K(π) = Ei(π)/Ei−1(π)/.../E(π)/F is purely transcendental
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� and therefore q′K = (q
′

K)an as K is an intermediate field in K(π)/F .

Set q̃j ∶= (q̃Ej
)an. Observe that by induction it suffices to prove (q̃j)Ej(π)

is isotropic, whenever πEj+1
is anisotropic, which is equivalent to j < i.

Indeed, as we have Ej+1 = Ej(q̃j) by definition and therefore Ej+1(π) =
Ej(π)(q̃j).

To keep notation compact we may assume j = 0 (note that other than
removing indices the assumptions and statement we want to prove do not
change):

Suppose πF1 is anisotropic. Aiming for contradiction, we assume (q̃an)E(π)
is anisotropic. So

(q̃an)E(π) = −q
′ in W (E(π))

implies (q̃an)E(π) = −q over E(π) by assumption 2.. But this would imply

dim q̃an = dim q′

which would imply

dimπ

2
≥ dim q′ = dim q̃ ≥ dimπ − dim q′ ≥

dimπ

2

where we used that if dim(π ⊥ −q′)an < dimπ − dim q′, ”≤” would π ≃ q′ ⊥ ϕ
for some quadratic form ϕ over E by remark 4.2, ”<” would imply that ϕ
is isotropic - a contradiction. By the usual Witt ring argument this shows
π ≃ q′ ⊥ q̃an over E, contradicting the fact that πF1 is anisotropic, but q̃F1 is
not.
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